
USER GUIDE FOR

A Python package for
engineering economic decision-making.

Version 0.8.4

June 4, 2025

©2025 Wayne Matthew Syvinski



TABLE OF CONTENTS TABLE OF CONTENTS

Table of Contents

1 License and Terms 3

2 About Enginomics 4

3 Installation and Required Libraries 5

4 Class Cashflow 6
4.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 How to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2.1 Import Statement . . . . . . . . . . . . . . . . . . . . . 6
4.2.2 Constructors and Quasi-Constructors . . . . . . . . . . 6
4.2.3 SPECIAL NOTE: Cash Flow Time Horizons . . . . . . 12
4.2.4 Overloaded Operators . . . . . . . . . . . . . . . . . . 13
4.2.5 Property Methods . . . . . . . . . . . . . . . . . . . . 14
4.2.6 Text Processing Methods for Cash Flow Definition Strings 15
4.2.7 Analysis Methods . . . . . . . . . . . . . . . . . . . . . 21

4.3 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Class IncrementalBCR 29
5.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 How to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Import Statement . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Constructor . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.3 Static Methods . . . . . . . . . . . . . . . . . . . . . . 29
5.2.4 Property Methods . . . . . . . . . . . . . . . . . . . . 30
5.2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Class IncrementalIRR 35
6.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 How to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.1 Import Statement . . . . . . . . . . . . . . . . . . . . . 35
6.2.2 Constructor . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.3 Static Methods . . . . . . . . . . . . . . . . . . . . . . 35
6.2.4 Property Methods . . . . . . . . . . . . . . . . . . . . 36
6.2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1 Ver. 0.8.4: June 4, 2025



TABLE OF CONTENTS TABLE OF CONTENTS

7 Class Amortization 41
7.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 How to Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2.1 Import Statement . . . . . . . . . . . . . . . . . . . . . 41
7.2.2 Constructor . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Appendix A: Full Text of License 46

9 Appendix B: History and Release Notes 51

10 Appendix C: Development Roadmap 52
10.1 Short Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2 Medium Term . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.3 Long Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Ver. 0.8.4: June 4, 2025



1 LICENSE AND TERMS

1 License and Terms

Enginomics may be used under the Apache License 2.0. A copy of the license
is provided in Appendix A of this document.

Within the terms of the Apache License 2.0, you are free to take the source
code, change it, and re-distribute it. However, you may not call any deriva-
tive product ”Enginomics”, nor use the word ”Enginomics” in the derivative
product’s name. This applies regardless of the use of upper-case or lower-case
letters.

3 Ver. 0.8.4: June 4, 2025



2 ABOUT ENGINOMICS

2 About Enginomics

The purpose of Enginomics is to provide utilities for the manipulation and
analysis of cash flow series. It is designed with engineering economic anal-
ysis in mind, but is not limited to use with or for engineering projects.
Enginomics will also amortize loans.

Why did I write Enginomics? I am a (much) older student enrolled in Mis-
sissippi State University’s online BS in Industrial Engineering program. I
recently completed a course in engineering economics, a key course for in-
dustrial engineering students. (I entered the BSIE program already having
earned a degree in accounting. I still learned a ton.) I have arthritic hands, so
it was easier to type up my homework in LATEX than to write it by hand. The
one problem: cash flow diagrams. I ended up graphing those in Excel, saving
the graphic, and embedding into my LATEX document. I quickly realized that
I could also use Excel to check my work. While I was a “good boy” and did
all my work by hand using the interest tables, I used Excel to confirm my an-
swers. I would have lost several points had I not checked my work in this way.

However, even using Excel was cumbersome. I realized that I could use
Python to do many of these tasks automatically. A search of the Python
package repository did not lead me to any packages that did what I wanted
Python to do, so I wrote the software myself, and decided to share it.

Bug reports, suggestions, and requests for features may all be sent to
enginomics ∂ engihelp ⊙ net.

Regards,
Wayne Matthew Syvinski
May 17, 2025

Glory to God for all things!

4 Ver. 0.8.4: June 4, 2025



3 INSTALLATION AND REQUIRED LIBRARIES

3 Installation and Required Libraries

The following libraries are required to use Enginomics:

• matplotlib

• numpy

• numpy-financial

• pandas

• pandasql

• seaborn

The analyst may also have to import copy and math, but these are part of
the Python Standard Library.

Dependencies will be installed if using pip:

• pip install Enginomics

If using a conda environment (such as Anaconda), please consult the appro-
priate documentation.

5 Ver. 0.8.4: June 4, 2025



4 CLASS CASHFLOW

4 Class Cashflow

4.1 About

NOTE!

Class Cashflow is the heart of the Enginomics package.

It allows cash flow series to be entered, analyzed, and graphed easily. It
also facilitates quick and easy pairwise incremental analysis when used with
classes IncrementalIRR and IncrementalBCR.

WARNING!

Note that class Cashflow has no notion of years, quarters, months, or
any other specific time span. There are only compounding periods. For
example, if the analyst wants to use monthly compounding, the nominal
APR must be divided by 12 to get the appropriate interest rate for the
compounding period.

4.2 How to Use

4.2.1 Import Statement

from Enginomics import Cashflow

4.2.2 Constructors and Quasi-Constructors

While there is a default constructor as required by Python, it is strongly
recommended that analysts do not use the default constructor. Rather, there
are static methods that serve as quasi-constructors that are far easier to use.

Quasi-Constructor from list

Arguments: (cflist: list, rate: float = None)

This quasi-constructor takes a list representing a cash flow sequence and
creates a Cashflow object. Compounding periods may not be skipped. If
you have a specific compounding period with no cash flow, you must enter a
0. In addition, the list is always processed as starting from period 0.

6 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

Optionally, the analyst can include the discount rate for the cash flow
series, but if not specified here, it will need to be specified using method
set rate().

The above paragraph is true for all quasi-constructors, so this in-
formation will not be repeated.

Example: For a project with initial cost of $10,000 yielding yearly revenue of
$3,500 for six years:

cfs = Cashflow.from list([-10000, 3500, 3500, 3500, 3500, 3500, 3500])

The resulting cash flow diagram:

Quasi-Constructor from dict

Arguments: (cfdict: dict, rate: float = None)

This quasi-constructor takes a dictionary representing a cash flow sequence
and creates a Cashflow object. The compounding periods are the keys, and
the cash flows are the values.

Example, which results in the same cash flow diagram as above: cfs =

Cashflow.from dict({0: -10000, 1: 3500, 2: 3500, 3: 3500,

7 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

4: 3500, 5: 3500, 6: 3500})

However, this quasi-constructor allows you to have gaps in your cash flow
series. In this case, Enginomics will insert the missing compounding peri-
ods. This feature is called autovivification. Missing compounding periods are
autovivified with a cash value of 0.

NOTE!

Make sure you understand the concept of autovivification. It is used
throughout Enginomics, and will be referenced often in this document.

Example: cfs = Cashflow.from dict({0: -10000, 3: 5000, 6:2000,

10:7000})

The resulting cash flow diagram:

Quasi-Constructor expansion from dict

Arguments: (cfdict: dict, rate: float = None)

This quasi-constructor takes a dictionary input, but instead of autovivifying
missing entries with a zero cash value, it autovivifies missing entries by look-
ing at the latest defined value in the cash flow and repeating it until it gets
to the next defined value.

8 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

Example: A project has an initial investment of $15,000. In years 1 through
3, the return is a uniform annual series of $3,000. In years 4 through 7, the
return is a uniform annual series of $8,000. Finally, in years 8 through 12,
the return is an annual series of $6,500.

If using the from list() quasi-constructor, you would have to pass every
cash flow explicitly:
[-15000, 3000, 3000, 3000, 8000, 8000, 8000, 8000,

6500, 6500, 6500, 6500, 6500]

Using expansion from dict(), you can express this more compactly:
cfd = Cashflow.expansion from dict({0: -15000, 1: 3000, 4: 8000,

8: 6500, 12: 6500})

Note that you have to terminate the series explicitly, which is why the value
6500 is given twice. The last entry in the dictionary tells Enginomics when
to stop autovivifying entries. The last entry need not be the same as the
immediately preceding defined entry; it could, among other things, reflect
the salvage value at the end of the project.

The resulting cash flow diagram:

9 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

Quasi-Constructor from annuity

Arguments: (start period: int, end period: int, amount: float,

rate: float = None)

This quasi-constructor generates a uniform annual series based on a defined
starting compounding period, an ending compounding period, and an annual
amount. Any compounding periods that come before the defined starting
compounding period are autovivified with a cash value of 0.

Example: Model a uniform series from year 4 to year 9 with a value of $3,500
per year.

cfd = Cashflow.from annuity(start period = 4, end period = 9, amount

= 3500)

The resulting cash flow diagram:

Quasi-Constructor from arith

Arguments: (start period: int, end period: int, amount: float,

rate: float = None)

This quasi-constructor generates an arithmetic gradient based on a defined
starting compounding period, an ending compounding period, and an amount

10 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

of annual increase. Any compounding periods that come before the defined
starting compounding period are autovivified with a cash value of 0.

Example: Model an arithmetic gradient from year 3 to year 6 with a value
of $200 per year.

NOTE!

Remember: the first compounding period
of an arithmetic gradient has a cash value of zero!

cfd = Cashflow.from arith(start period = 3, end period = 6, amount

= 200)

The resulting cash flow diagram:

Quasi-Constructor from geom

Arguments: (start period: int, end period: int, amount: float,

pct change: float, rate: float = None)

This quasi-constructor generates a geometric gradient based on a defined

11 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

starting compounding period, an ending compounding period, a starting
amount, and the period-over-period percentage of annual increase. Any com-
pounding periods that come before the defined starting compounding period
are autovivified with a cash value of 0. The percent change must be expressed
as a decimal fraction (e.g. 8% is given as 0.08), but you can express this as
a percentage value if you divide by 100 in the quasi-constructor call (e.g. 8%
given as 8.0/100.0 or float(8)/float(100))

Example: Model a cash flow that has an initial value of $1,200, with a year-
over-year increase of 6.5%, starting at year 2 and ending at year 7.

cfd = Cashflow.from geom(start period = 2, end period = 7, amount

= 1200, pct change = 6.5/100.0)

The resulting cash flow diagram:

4.2.3 SPECIAL NOTE: Cash Flow Time Horizons

This concept will come up later in this documentation, so it is important to
understand it now. Therefore, it is being presented here rather than in the
methods section of the class documentation

12 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

NOTE!

Two cash flow series have the same horizon if and only if :

1. They each start at the same compounding period
2. They each end at the same compounding period
3. They have the same number of compounding periods (i.e. there are

no missing compounding periods in the sequence)

It is not necessary for the cash values in each compounding period to be equal
for each cash flow series.

There is a method defined to test whether two cash flow series have the same
horizon: same horizon(cfd: ’Cashflow’)

Example:

Benefits (income) cash flow:
cf ben = Cashflow.from list([0, 5000, 7000, 8000, 6000, 2700])

Costs cash flow:
cf cost = Cashflow.from list([-10000, -1000, -1000, -3500])

horizon test = cf ben.same horizon(cf cost)

This can be read as, ”For cash flow series cf ben, check if it has the same
horizon as cash flow series cf cost.”

print(horizon test)

> False

4.2.4 Overloaded Operators

The following operators are overloaded for use by class Cashflow:

• addition: cashflow1 + cashflow2

• subtraction: cashflow2 - cashflow2

• multiplication: cashflow * number or number * cashflow

• division: cashflow / number

13 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

• unary negation: -cashflow

NOTE!

Addition and subtraction do not require cash flows to have the same
horizon. This is to allow building up net cash flows from individual
component cash flows.

WARNING!

Cashflow objects created using overloaded operators will not have a
discount rate set. The analyst will have to assign it to the result using
the set rate() property method.

Examples:

Benefits (income) cash flow:
cf ben = Cashflow.from list([0, 5000, 7000, 8000, 6000, 2700])

Costs cash flow:
cf cost = Cashflow.from list([-10000, -1000, -1000, -3500, -500,

-750])

Net cash flow: cf net = cf ben + cf cost

Result: print((cf cost + cf ben).to list())

> [-10000, 4000, 6000, 4500, 6000.0, 2700.0]

The other overloaded operators work in a similar, intuitive manner.

4.2.5 Property Methods

These are not true properties in the sense that using Python decorators would
provide. This is a deliberate design decision. However, these methods do act
as property getters and setters.

Property Method get rate

Arguments: none

14 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

Retrieve the discount rate for the Cashflow object. This is a decimal fraction;
e.g. a discount rate of 7.5% will be returned as 0.075.

Property Method set rate

Arguments: (rate: float)

Set the discount rate for the Cashflow object. This is a decimal fraction; e.g.
a discount rate of 6.25% must be entered as 0.0625.

Property Method get period

Arguments: (period: int)

Retrieve the cash value of the Cashflow object at the specified compounding
period.

Property Method set period

Arguments: (period: int, amount: float = 0.0)

Set the cash value of the Cashflow object at the specified compounding
period using the value provided with argument amount. The default is 0.
If the compounding period does not exist in the Cashflow object, it will be
autovivified. If the compounding period indicated will create gaps in the cash
flow series, the intervening compounding periods will be autovivified with a
cash value of 0.

4.2.6 Text Processing Methods for Cash Flow Definition Strings

Introduction

It is not necessary to use the quasi-constructor methods to create Cashflow ob-
jects. Enginomics can parse cash flow definition strings to generate them;
in fact, it can read from text files containing many cash flow definition strings.

Conversely, Enginomics can write cash flow definition strings to a text file
to save them for later use.

Structure of Cash Flow Definition Strings

15 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

Here is an example of the contents of a text file holding several cash flow
definition strings:

Project A|list|0.08|-12000,3000,4000,5000,6000
Project B|dict|0.07|0:-10000,1:3400,5:2800,10:7800
Project C|expand|0.065|0:-10000,1:3400,5:2800,10:7800
Project D|arith|0.10|5,12,1000
Project E|geom||3,10,400,0.075
Project F$C$|list||-10000,-1000,-1000,-5500,-1000,-500
Project F$B$|list||0,4000,4000,5000,5000,8500
Project G|annuity|0.115|4,9,3500

Each line is pipe-delimited into four fields in this order:

• name of cash flow
• parsing method
• discount rate
• cash flow definition details

Every cash flow definition string must have a name; it cannot be blank.
This is because Cashflow does not return bare Cashflow objects when pars-
ing cash flow definition strings, but a dictionary where the cashflow name is
the key, and the Cashflow object is the value.

Please make special note of the entries for Project F. Project F is listed twice,
but each entry has a different suffix. Suffix $C$ is used to denote the cash flow
of costs for a project, and suffix $B$ is used to denote the cash flow of benefits
for the same project. This will be discussed in detail in the documentation
for class IncrementalBCR, which is used for incremental benefit-cost ratio
analysis.

Each parsing method corresponds to one of the quasi-constructor methods
defined in class Cashflow. If dictionary cashflow is the target to receive the
result of parsing:

• parsing the entry for Project A, which uses parsing method list, is
equivalent to:
cashflow[‘Project A’] =

Cashflow.from list(-12000,3000,4000,5000,6000), 0.08)

16 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

• parsing the entry for Project B, which uses parsing method dict, is
equivalent to:
cashflow[‘Project B’] =

Cashflow.from dict({0:-10000,1:3400,5:2800,10:7800}, 0.08)

• parsing the entry for Project C, which uses parsing method expand, is
equivalent to:
cashflow[‘Project C’] =

Cashflow.expansion from dict({0:-10000,1:3400,5:2800,10:7800},
0.08)

• parsing the entry for Project D, which uses parsing method arith, is
equivalent to:
cashflow[‘Project D’] =

Cashflow.from arith(start period = 5, end period = 12,

amount=1000, rate=0.08)

• parsing the entry for Project E, which uses parsing method geom, is
equivalent to:
cashflow[‘Project E’] =

Cashflow.from geom(start period = 5, end period = 12,

amount=1000, pct change = 0.075, rate=0.08)

• parsing the entry for Project G, which uses parsing method annuity,
is equivalent to:
cashflow[‘Project G’] =

Cashflow.from annuity(start period = 4, end period = 9,

amount=3500, rate=0.115)

Including the discount rate in the cash flow definition string is optional, but
if not included there, it must be specified later using the set rate() method.
The fourth column contains the specification for building the Cashflow ob-
ject. Based on the previous discussion of parsing methods, the structures
should be easily understandable.

Method make entry text

Arguments: (entry name: str)

Create a cash flow definition string using entry name as the name of the cash
flow. Note that while Cashflow can parse cash flow definition strings using

17 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

any of the five defined parsing methods, Cashflow always generates cash
flow definition strings for use with the dict parsing method, which is best
for human readability.

Example:
cfds = mycashflow.make entry text(‘Huge Project’)

Static Method parse entry text

Arguments: (entry: str)

Creates a Cashflow object from a cash flow definition string.

Example:
mycashflow =

Cashflow.parse entry text(’Project D|arith|0.10|5,12,1000’)

Method write entry

Arguments: (file: str, entry name: str)

Create a cash flow definition string using entry name as the name of the cash
flow and saves it to file file. It is recommended to give the full path of the
save file in file. The cash flow definition string is always written to the file
in append mode; if the file does not exist, Python will create it. Make sure
you are not saving a cash flow definition string with a duplicate name to an
already-existing file.

Static Method write all entries

Arguments: (file: str, cf named dict: dict)

Given a dictionary cf named dict with the names of cash flows as the keys,
and the corresponding Cashflow objects as the values, render each entry as a
cash flow definition string and write them all to file file. It is recommended
to give the full path of the save file in file. The cash flow definition strings
are written to the file in append mode; if the file does not exist, Python will
create it. Make sure you are not saving a cash flow definition strings with a
duplicate names to an already-existing file.

18 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

Example:

cashflow1 = Cashflow.from list([-10000, 3500, 3500, 3500, 3500])

cashflow2 = Cashflow.expansion from dict({0:-25000,1:5000, 10:7500},
0.085)

cashflow3 = Cashflow.from dict(0:-10000,1:3400,5:2800,10:7800, 0.08)

my cashflow dict[‘Project 1’] = cashflow1
my cashflow dict[‘Project 2’] = cashflow2
my cashflow dict[‘Project 3’] = cashflow3

savefile = r‘C:\path\to\my\cashflows\bigcashflowfile.txt’

Cashflow.write all entries(file = savefile,
cf named dict = my cashflow dict)

Static Method fetch entry names

Arguments: (file: str))

From a file given in file, return the list of names of the cash flow definition
strings contained in it.

Example:

File C:\cashflows\cashflowfile.txt contains the following cash flow def-
inition strings:

Project A|list|0.08|-12000,3000,4000,5000,6000
Project B|dict|0.07|0:-10000,1:3400,5:2800,10:7800
Project C|expand|0.065|0:-10000,1:3400,5:2800,10:7800
Project D|arith|0.10|5,12,1000
Project E|geom||3,10,400,0.075

To get the list of cash flow names:

names list = Cashflow.fetch entry names(

19 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

file = ‘C:\cashflows\cashflowfile.txt’)

print(names list)
> [‘Project A’,‘Project B’,‘Project C’,‘Project D’,‘Project E’]

Static Method fetch entries

Arguments: (file: str, entry names: list = None, merge into: dict

= {})

From file file containing cash flow definition strings, read them into a dic-
tionary with the cash flow names as keys, and Cashflow objects as values.
If the analyst wishes to merge this dictionary with an existing one, pass the
name of the existing dictionary to argument merge into. If no merging is
required, argument merge into may be omitted.

The default for this method is that all records will be read in (entry names

= None). However, an entry other than None is supplied for entry names,
this method will read in only the records indicated in argument entry names,
which is a list of strings containing the entry names desired for extraction. If
only a single entry is desired, this argument can be passed as a string rather
than a list.

Examples:

File C:\cashflows\cashflowfile.txt contains the following cash flow def-
inition strings:

Project A|list|0.08|-12000,3000,4000,5000,6000
Project B|dict|0.07|0:-10000,1:3400,5:2800,10:7800
Project C|expand|0.065|0:-10000,1:3400,5:2800,10:7800
Project D|arith|0.10|5,12,1000
Project E|geom||3,10,400,0.075
Project G|annuity|0.115|4,9,3500

To get only the cash flow for Project D:

filename = ‘C:\cashflows\cashflowfile.txt’

20 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

cashflow dict = Cashflow.fetch entries(file = filename,
entry names = ‘Project D’)

This yields a dict with one entry with ‘Project D’ as the key, and the
corresponding Cashflow object as the value.

Now, fetch the entries for Project A and Project E, merge them with the dic-
tionary for Project D into a new dictionary, and assign it to a new dictionary.

cashflow dict 2 = Cashflow.fetch entries(
file = filename,
entry names = [‘Project A’, ‘Project E’],
merge into = cashflow dict)

To read all the cash flows from the file into a new dictionary:

cashflow dict all = Cashflow.fetch entries(file = filename)

4.2.7 Analysis Methods

WARNING!

None of the analysis methods take the discount rate as an argument.
The discount rate must be set in the Cashflow object either at the time
of creation (using one of the quasi-constructors), or by using property
method set rate().

Method irr

Arguments: None

Calculates the internal rate of return for the cashflow.

Usage: my irr = mycashflow.irr()

Method mirr

Arguments: (reinvest rate: float)

21 Ver. 0.8.4: June 4, 2025



4.2 How to Use 4 CLASS CASHFLOW

Given the reinvestment rate reinvest rate, calculate the modified internal
rate of return.

Usage: my mirr = mycashflow.mirr(0.11)

Method npv

Arguments: None

Calculates the net present value of the cashflow.

Usage: my npv = mycashflow.npv()

Method nfv

Arguments: None

Calculates the net future value of the cashflow.

Usage: my nfv = mycashflow.nfv()

Method nus

Arguments: None

Calculates the net uniform series value (EUAB, EUAC, EUAW) of the cash-
flow.

Usage: my nus = mycashflow.nus()

Method nper

Arguments: None

Returns the number of compounding periods in the cashflow.

Usage: my nper = mycashflow.nper()

Method payback

Arguments: None

22 Ver. 0.8.4: June 4, 2025



4.3 Other Methods 4 CLASS CASHFLOW

Usage: mycashflow.payback()
Calculates the number of compounding periods required to recover an invest-
ment cost. This is calculated using nominal dollars. Note that, while costs
after period 0 are accounted for, once the cash balance is 0 or greater, the
calculation stops, and will not account for costs beyond that compounding
period.

If payback is never achieved, the value inf is returned (infinity from package
math: math.inf). This is to facilitate comparisons such as
if cf1.payback() < cf2.payback():

Method payback disc

Arguments: None

Usage: mycashflow.payback disc()

Calculates the number of compounding periods required to recover an invest-
ment cost. This is calculated using constant dollars based on the discount
rate given in the Cashflow object. Note that, while costs after period 0 are
accounted for, once the cash balance is 0 or greater, the calculation stops,
and will not account for costs beyond that compounding period.

If payback is never achieved, the value inf is returned (infinity from package
math: math.inf). This is to facilitate comparisons such as
if cf1.payback disc() < cf2.payback disc():

4.3 Other Methods

Method replicate

Arguments: (times: int = 2)

This method is used for incremental analysis to ensure that cashflows with
different horizons are made to have identical horizons. This method is used
in class IncrementalIRR for the pairwise comparison of incremental IRRs.
The cashflow is replicated as many times as given in the times argument. A
new Cashflow object is returned; the original one is unchanged.

23 Ver. 0.8.4: June 4, 2025



4.3 Other Methods 4 CLASS CASHFLOW

Example:

Original cashflow: cf original = Cashflow.from list([-1000,750,750,750])

Cashflow diagram:

Replicate the original cashflow three times:
cf3 = cf original.replicate(times = 3)

Cashflow diagram:

24 Ver. 0.8.4: June 4, 2025



4.3 Other Methods 4 CLASS CASHFLOW

Method separate bc

Arguments: None

This method breaks a Cashflow object into two Cashflow objects. One of
them contains only positive entries or zero (benefits), and the other con-
tains for negative entries or zero (costs). This is used to facilitate analysis
of benefit/cost ratios. However, this should be used only for the simplest
benefit/cost models, such as an initial investment followed only by revenues.
Benefit/cost analysis must not be done on netted cashflows. If cashflows are
more complicated, where compounding periods have both benefits and costs,
two Cashflow objects should be defined from the start. There will be more
discussion of this in the section for class IncrementalBCR.

Usage: [cf benefit, cf cost] = mycashflow.separate bc()

Method to dict

Arguments: None

Returns a dict object containing the compounding periods as the keys, and
the cash amounts as the values.

Usage: mycashflow.to dict()

25 Ver. 0.8.4: June 4, 2025



4.3 Other Methods 4 CLASS CASHFLOW

Method to list

Arguments: None

Returns a list object containing the cash values for each compounding pe-
riod, starting with period 0 and continuing until the end of the cash flow
series.

Usage: mycashflow.to list()

Method plot cfd

Arguments: (
subject: str = None,

scale: int = 1,

savefile: str = None,

showplot: bool = False,

poscolor: str = ’005643’,

negcolor: str = ’FF4F00’,

barfontsize int: = 12

)

Returns a cash flow diagram, of which several examples are in this document.

Argument subject adds text chosen by the analyst to the plot title.

Argument scale is used when large cash amounts are used in the Cashflow ob-
ject to make the cash flow diagram easier to read.

Argument savefile indicates to where Enginomics should save the plot.
The file extension provided (.png, .jpg, .svg) determines the file format for
export. The best results have come by exporting to .png. If savefile is set
to None, no file will be saved; this is the default behavior.

Argument showplot indicates whether to show the cash flow diagram while
the program is running. Setting showplot = True will cause the cash flow
diagram to appear during execution. This will suspend execution of the pro-
gram until the plot is closed. Setting showplot = False will suppress display
of the cash flow diagram; this is the default behavior.

26 Ver. 0.8.4: June 4, 2025



4.3 Other Methods 4 CLASS CASHFLOW

Argument poscolor is the color selection for showing positive cash flow in
a compounding period. A hex color code should be used for this argument.
The default is NDSU green (#005643).

Argument negcolor is the color selection for showing negative cash flow in
a compounding period. A hex color code should be used for this argument.
The default is engineering orange (#FF4F00).

Argument barfontsize sets the font size of the labels above (or below) the
bars of the cash flow diagram.

As an aside, while commas cannot be placed in numeric literals in Python,
underscores can be use in their place to increase readability, as shown below.

Example:

mycashflow = Cashflow.from list([-100 000 000,
52 000 000, 78 000 000, 47 000 000, 44 000 000])

mycashflow.plot cfd(subject = ’Unscaled Data’,
savefile=r’C:\save\to\unscaled.png’, scale=1 000 000)

Resulting cash flow diagram:

27 Ver. 0.8.4: June 4, 2025



4.3 Other Methods 4 CLASS CASHFLOW

Now use scaling, and also change the color scheme:

savefile=r’C:\save\to\scaled.png’

mycashflow.plot cfd(subject = ’Scaled Data’,
scale=1 000 000, poscolor = ’#f1c40f’, negcolor = ’#6c3483’)

Resulting cash flow diagram:

28 Ver. 0.8.4: June 4, 2025



5 CLASS INCREMENTALBCR

5 Class IncrementalBCR

5.1 About

Class IncrementalBCR is for performing incremental benefit-cost ratio (BCR)
analysis for an arbitrary number of project alternatives. A detailed report is
available upon performing the analysis.

5.2 How to Use

5.2.1 Import Statement

from Enginomics import IncrementalBCR

5.2.2 Constructor

bcr model = IncrementalBCR(outputfile: str = None, marr: float

= None)

The minimum acceptable rate of return (MARR) (a.k.a. hurdle rate) must
be passed as a decimal fraction; e.g. if the MARR is 7.5%, then the argument
should be passed as marr = 0.075.

Argument outputfile should contain the full path of the output file, and
have an extension of .xlsx

If the analyst chooses not to pass values for a parameter, then the parameter
value will need to be set using the property methods set marr() and/or
set outputfile().

5.2.3 Static Methods

Static Method prep irr

Arguments: None

Usage: irr model = bcr model.prep irr()

IncrementalBCR does not perform incremental internal rate of return (IRR)
analysis. However, method prep irr() creates an IncrementalIRR object

29 Ver. 0.8.4: June 4, 2025



5.2 How to Use 5 CLASS INCREMENTALBCR

so that the analyst does not need to set up an incremental IRR analysis from
scratch when analyzing the same project alternatives.

If performing both incremental BCR and incremental IRR analyses, the an-
alyst should perform incremental BCR first. This is because the benefit and
cost cash flows will be summed, and the net cash flow series send to the
IncrementalIRR object. This causes a decrease in resolution and loss of
information. Incremental BCR analysis should not be performed on netted
cash flows.

5.2.4 Property Methods

Method set marr

Arguments: (marr: float)

Example: For a MARR of 9%:
bcr model.set marr(0.09)

Method get marr

Arguments: None

Example: marr = bcr model.get marr()

Method set outputfile

Arguments: (outputfile: str)

Example: bcr model.set outputfile(‘C:\cashflows\bcrmodel.xlsx’)

Method get outputfile

Arguments: None

Example: outputfile = bcr model.get outputfile()

5.2.5 Methods

Method add alternative

Arguments:
(altname: str,

30 Ver. 0.8.4: June 4, 2025



5.2 How to Use 5 CLASS INCREMENTALBCR

cf benefit: ‘Cashflow’,

cf cost: ‘Cashflow’)

Example:
bcr model.add alternative(‘Project A’, project a cashflow benefit,

project a cashflow cost)

Every option for analysis must have a unique name, which should be assigned
to parameter altname.

For an incremental cost-benefit ratio analysis, benefits and costs must have
separate cash flow series defined. The Cashflow object with the project
benefits should be passed to parameter cf benefit, and the Cashflow object
with the project costs should be passed to parameter cf cost.

WARNING!

For any single alternative, the benefit cash flow and the cost cash flow
must have the same horizon. If they do not, Enginomics will throw an
exception, and the program will terminate.

NOTE!

It is not required that all alternatives have the same horizon. Only the
benefit and cost cash flows within a single alternative must have the
same horizon.

Method del alternative

Arguments: (altname: str, fail silent: bool = False)

Remove an alternative from the specified object by passing the name of the
alternative to argument altname.

WARNING!

Spelling, whitespace, and capitalization must match exactly.

If argument fail silent = False, Enginomics will throw an exception,
and the program will terminate; this is the default behavior. If argument
fail silent = True, the program will continue executing even if the alter-

31 Ver. 0.8.4: June 4, 2025



5.2 How to Use 5 CLASS INCREMENTALBCR

native name does not exist.

Example: bcr model.del alternative(’Alternative A’)

Method ingest file

Arguments: (file: str)

Reads in the cash flow definition string entries from a text file. Since benefit-
cost ratio analysis requires separate cash flows for benefit and cost, any cash
flow definition string that does not have a name (i.e. first column value)
ending with $B$ or $C$ will be silently discarded.

Example: bcr model.ingest file(‘C:\cashflows\bcrentries.txt’)

Method list alternatives

Arguments: None

Return the list of alternative names from the IncrementalBCR object.

Example: bcr altnames = bcr model.list alternatives()

Method generate

Arguments: None

This method performs the pairwise incremental benefit-cost ratio analysis,
and calculates a number of other metrics. If an output file was specified
in the constructor or with property method set outputfile(), a Microsoft
Excel spreadsheet will be generated. The output spreadsheet contains two
worksheets: alternatives listing and pairwise comparisons. The con-
tents of these worksheets will be discussed in methods fetch alternatives

and fetch pairwise.

WARNING!

Neither of the following methods will return meaningful results until
method generate() is invoked.

32 Ver. 0.8.4: June 4, 2025



5.2 How to Use 5 CLASS INCREMENTALBCR

Method fetch alternatives

Arguments: None

Usage: bcr model alts df = bcr model.fetch alternatives()

This method returns a pandas DataFrame containing the same information
contained in worksheet alternatives listing. It is not required that a Mi-
crosoft Excel spreadsheet be generated to use this method. The field names in
the pandas DataFrame are the same as the column headers in the worksheet.

An example of the Excel output: (please note that the graphic is divided into
two sections for readability; in the worksheet, all information is displayed in
a single row for each alternative)

Columns (with descriptions if necessary):

1. alternative: alternative name as assigned by the analyst
2. MARR: minimum acceptable rate of return, assigned by the analyst
3. PW(benefit): present worth of benefits
4. PW(cost): present worth of costs
5. NPW: net present worth
6. EUAB: equivalent uniform annual series for benefits
7. EUAC: equivalent uniform annual series for costs
8. EUAW: equivalent uniform annual series for net worth

33 Ver. 0.8.4: June 4, 2025



5.2 How to Use 5 CLASS INCREMENTALBCR

9. CBR: cost-benefit ratio
10. IRR: internal rate of return
11. payback period
12. discounted payback period

Method fetch pairwise

Arguments: None

Usage: bcr model df = bcr model.fetch pairwise()

This method returns a pandas DataFrame containing the same information
contained in worksheet pairwise comparison. It is not required that a Mi-
crosoft Excel spreadsheet be generated to use this method. The field names in
the pandas DataFrame are the same as the column headers in the worksheet.

An example of the Excel output:

Note that the first defender is always NOTHING, i.e. the do-nothing op-
tion.

34 Ver. 0.8.4: June 4, 2025



6 CLASS INCREMENTALIRR

6 Class IncrementalIRR

6.1 About

Class IncrementalIRR is for performing incremental internal rate of return
(IRR) analysis for an arbitrary number of project alternatives. A detailed
report is available upon performing the analysis.

6.2 How to Use

6.2.1 Import Statement

from Enginomics import IncrementalIRR

6.2.2 Constructor

bcr model = IncrementalIRR(outputfile: str = None,

marr: float = None)

The minimum acceptable rate of return (MARR) (a.k.a. hurdle rate) must
be passed as a decimal fraction; e.g. if the MARR is 7.5%, then the argument
should be passed as marr = 0.075.

Argument outputfile should contain the full path of the output file, and
have an extension of .xlsx

If the analyst chooses not to pass values for a parameter, then the parameter
value will need to be set using the property methods set marr() and/or
set outputfile().

6.2.3 Static Methods

Static Method prep bcr

Arguments: None
Usage: bcr model = irr model.prep bcr()

IncrementalIRR does not perform incremental benefit-cost ratio (BCR) anal-
ysis. However, method prep irr() creates an IncrementalIRR object so that
the analyst does not need to set up an incremental IRR analysis from scratch

35 Ver. 0.8.4: June 4, 2025



6.2 How to Use 6 CLASS INCREMENTALIRR

when analyzing the same project alternatives.

If performing both incremental BCR and incremental IRR analyses, the an-
alyst should perform incremental BCR first. This is because the benefit and
cost cash flows will be summed, and the net cash flow series send to the
IncrementalIRR object. This causes a decrease in resolution and loss of
information. Incremental BCR analysis should not be performed on netted
cash flows. However, if the cash flows are simple, with a single initial cost
and only benefits thereafter, prep bcr() can be used to achieve an accurate
incremental BCR analysis.

6.2.4 Property Methods

Method set marr

Arguments: (marr: float)

Example: For a MARR of 9%:
irr model.set marr(0.09)

Method get marr

Arguments: None

Example: marr = irr model.get marr()

Method set outputfile

Arguments: (outputfile: str)

Example: irr model.set outputfile(‘C:\cashflows\irrmodel.xlsx’)

Method get outputfile

Arguments: None

Example: outputfile = irr model.get outputfile()

6.2.5 Methods

Method add alternative

Arguments:

36 Ver. 0.8.4: June 4, 2025



6.2 How to Use 6 CLASS INCREMENTALIRR

(altname: str,

cfd: ’Cashflow’)

Example: irr model.add alternative(’Project A’, project a cashflow)

Every option for analysis must have a unique name, which should be as-
signed to parameter altname. The corresponding Cashflow object should be
assigned to parameter cfd

NOTE!

It is not required that all alternatives have the same horizon.

Method del alternative

Arguments: (altname: str, fail silent: bool = False)

Example: irr model.del alternative(’Alternative A’)

Remove an alternative from the specified object by passing the name of the
alternative to argument altname.

WARNING!

Spelling, whitespace, and capitalization must match exactly.

If argument fail silent = False, Enginomics will throw an exception,
and the program will terminate; this is the default behavior. If argument
fail silent = True, the program will continue executing even if the alter-
native name does not exist.

Method ingest file

Arguments: (file: str)

Reads in the cash flow definition string entries from a text file.

If the file contains separate cash flows for benefit and cost, i.e. any cash flow
definition string that has a name (i.e. first column value) ending with $B$
or $C$, the two parts will be added together. If both parts are not present

37 Ver. 0.8.4: June 4, 2025



6.2 How to Use 6 CLASS INCREMENTALIRR

in the file, the unpaired cash flow will be silently discarded. Regular cash
flows are processed normally.

Example: irr model.ingest file(‘C:\cashflows\irrentries.txt’)

Method list alternatives

Arguments: None

Example: irr altnames = irr model.list alternatives()

Return the list of alternative names from the IncrementalIRR object.

Method generate

Arguments: None

Example: irr model.generate()

This method performs the pairwise incremental benefit-cost ratio analysis,
and calculates a number of other metrics. If an output file was specified
in the constructor or with property method set outputfile(), a Microsoft
Excel spreadsheet will be generated. The output spreadsheet contains two
worksheets: alternatives listing and pairwise comparisons. The con-
tents of these worksheets will be discussed in methods fetch alternatives

and fetch pairwise.

WARNING!

Neither of the following methods will return meaningful results until
method generate() is invoked.

Method fetch alternatives

Arguments: None

Example: irr model alts df = irr model.fetch alternatives()

This method returns a pandas DataFrame containing the same information
contained in worksheet alternatives listing. It is not required that a Mi-

38 Ver. 0.8.4: June 4, 2025



6.2 How to Use 6 CLASS INCREMENTALIRR

crosoft Excel spreadsheet be generated to use this method. The field names in
the pandas DataFrame are the same as the column headers in the worksheet.

An example of the Excel output: (please note that the graphic is divided into
two sections for readability; in the worksheet, all information is displayed in
a single row for each alternative)

Columns (with descriptions if necessary):

1. alternative: alternative name as assigned by the analyst
2. periods: number of compounding periods in the cash flow
3. IRR: internal rate of return
4. NPW: net present worth
5. CBR: cost-benefit ratio
6. payback period
7. discounted payback period
8. cf n: cash flows for individual compounding periods

WARNING!

While the cost-benefit ratio is given in the alternatives listing, this will
be inaccurate if the cash flow is the sum of a distributed cost cash flow
and a distributed benefit cash flow. Benefit-cost analysis should not be
run on netted cash flows!

Method fetch pairwise

Arguments: None

39 Ver. 0.8.4: June 4, 2025



6.2 How to Use 6 CLASS INCREMENTALIRR

Usage: irr model df = irr model.fetch pairwise()

This method returns a pandas DataFrame containing the same information
contained in worksheet pairwise comparison. It is not required that a Mi-
crosoft Excel spreadsheet be generated to use this method. The field names in
the pandas DataFrame are the same as the column headers in the worksheet.

An example of the Excel output:

Note that the first defender is always NOTHING, i.e. the do-nothing op-
tion.

40 Ver. 0.8.4: June 4, 2025



7 CLASS AMORTIZATION

7 Class Amortization

7.1 About

Class Amortization generates amortization tables for the repayment of loans.

WARNING!

This class is very different from the others discussed in this document.
Class Cashflow is not used in class Amortization. Do not assume that
parameters and behavior will be similar to class Cashflow.

7.2 How to Use

7.2.1 Import Statement

from Enginomics import Amortization

7.2.2 Constructor

Amortization(

principal: float,

intrate: float,

periods: int,

description: str = None,

period type: str = ’month’,

extra pmt: float = 0

)

Description of the arguments:

• principal: the principal (borrowed amount) of the loan

• intrate: annual nominal interest rate of the loan
NOTE: (example) an interest rate of 8% is passed as intrate = 8,
NOT intrate = 0.08,

• periods: number of periods of the loan; for example, a 30-year mort-
gage would be expressed as periods = 360 or periods = 30 * 12

41 Ver. 0.8.4: June 4, 2025



7.2 How to Use 7 CLASS AMORTIZATION

• description: description of the amortization model (e.g. description
= ‘New Home Purchase’)

• period type: can be any of ‘month’ (default), ‘quarter’, ‘year’,
‘semiannual’, or ‘period’. Class Amortization will calculate the
correct periodic interest rate for you. The exception is if ‘period’ is
chosen. This can be used to select unusual compounding periods, but in
that case, the analyst is required to peform the calculation to determine
the appropriate periodic interest rate.

• extra pmt: This allows the analyst to model an amortization for which
an extra amount is paid every period. By (U.S.) law, extra amounts
paid must be applied to the principal, and this will reduce the amount
of interest paid, and shorten the lifetime of the loan.

7.2.3 Methods

Method generate

Arguments: None

Example: for an Amortization object mortgage: mortgage.generate()

WARNING!

None of the following methods will return meaningful results until
method generate() is invoked.

Method get minimum payment

Arguments: None

Example: minimum payment = mortgage.get minimum payment()

Get the required minimum payment for each payment period.

Method get number payments

Arguments: None

Example: number of payments = mortgage.get number payments()

42 Ver. 0.8.4: June 4, 2025



7.2 How to Use 7 CLASS AMORTIZATION

Get the total number of payments made to retire the loan. If argument
extra pmt is greater than zero, the value retrieved by this method will be
less than the value given in argument periods.

Method get total interest

Arguments: None

Example: total interest paid = mortgage.get total interest()

Get the total amount of interest paid.

Method get total payments

Arguments: None

Example: total paid = mortgage.get total payments()

Get the total amount paid.

Method fetch amortization

Arguments: None

Example: mortgage df = mortgage.fetch amortization()

Returns the amortization table as a pandas DataFrame. See method export to excel

for a discussion of the structure of the DataFrame, which has the same col-
umn names as worksheet Amortization

Method export to excel

Arguments: filename: str

Example: mortgage.export to excel(‘C:\loans\loan amortization.xlsx’)

This method exports two worksheets to the Excel workbook indicated by the
analyst: Summary and Amortization.

The Summary tab has information about the loan.

43 Ver. 0.8.4: June 4, 2025



7.2 How to Use 7 CLASS AMORTIZATION

The Amortization tab contains the amortization schedule.

If an extra periodic payment is indicated, you will see something like this in
the amortization table.

In this example, a $350,000 30-year mortgage paid monthly with an extra $50

44 Ver. 0.8.4: June 4, 2025



7.2 How to Use 7 CLASS AMORTIZATION

paid each month results in the mortgage being paid off in month 335 instead
of month 360, i.e. 25 months early. Class Amortization will list all payment
periods, even if the loan is paid off early.

45 Ver. 0.8.4: June 4, 2025



8 APPENDIX A: FULL TEXT OF LICENSE

8 Appendix A: Full Text of License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE,

REPRODUCTION, AND DISTRIBUTION

1. Definitions

“License” shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the
copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other
entities that control, are controlled by, or are under common control with
that entity. For the purposes of this definition, ”control” means (i) the
power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent
(50%) or more of the outstanding shares, or (iii) beneficial ownership of
such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising
permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation source,
and configuration files.

“Object” form shall mean any form resulting from mechanical transforma-
tion or translation of a Source form, including but not limited to compiled
object code, generated documentation, and conversions to other media

46 Ver. 0.8.4: June 4, 2025



8 APPENDIX A: FULL TEXT OF LICENSE

types.

“Work” shall mean the work of authorship, whether in Source or Ob-
ject form, made available under the License, as indicated by a copyright
notice that is included in or attached to the work (an example is provided
in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications rep-
resent, as a whole, an original work of authorship. For the purposes of this
License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the origi-
nal version of the Work and any modifications or additions to that Work
or Derivative Works thereof, that is intentionally submitted to Licensor
for inclusion in the Work by the copyright owner or by an individual or
Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, ”submitted” means any form of electronic,
verbal, or written communication sent to the Licensor or its representa-
tives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are
managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicu-
ously marked or otherwise designated in writing by the copyright owner
as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and sub-
sequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable copyright license
to reproduce, prepare Derivative Works of, publicly display, publicly per-
form, sublicense, and distribute the Work and such Derivative Works in

47 Ver. 0.8.4: June 4, 2025



8 APPENDIX A: FULL TEXT OF LICENSE

Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this
License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this
section) patent license to make, have made, use, offer to sell, sell, im-
port, and otherwise transfer the Work, where such license applies only
to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contri-
bution(s) with the Work to which such Contribution(s) was submitted. If
You institute patent litigation against any entity (including a cross-claim
or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications,
and in Source or Object form, provided that You meet the following con-
ditions:

a You must give any other recipients of the Work or Derivative Works
a copy of this License; and

b You must cause any modified files to carry prominent notices stating
that You changed the files; and

c You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices
from the Source form of the Work, excluding those notices that do
not pertain to any part of the Derivative Works; and

d If the Work includes a ”NOTICE” text file as part of its distribution,
then any Derivative Works that You distribute must include a read-
able copy of the attribution notices contained within such NOTICE
file, excluding those notices that do not pertain to any part of the
Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within
the Source form or documentation, if provided along with the Deriva-
tive Works; or, within a display generated by the Derivative Works,

48 Ver. 0.8.4: June 4, 2025



8 APPENDIX A: FULL TEXT OF LICENSE

if and wherever such third-party notices normally appear. The con-
tents of the NOTICE file are for informational purposes only and do
not modify the License.

You may add Your own attribution notices within Derivative Works that
You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work by
You to the Licensor shall be under the terms and conditions of this Li-
cense, without any additional terms or conditions. Notwithstanding the
above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor, ex-
cept as required for reasonable and customary use in describing the origin
of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed
to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an ”AS IS” BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied, includ-
ing, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PAR-
TICULAR PURPOSE. You are solely responsible for determining the ap-
propriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether
in tort (including negligence), contract, or otherwise, unless required by
applicable law (such as deliberate and grossly negligent acts) or agreed to
in writing, shall any Contributor be liable to You for damages, including
any direct, indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use or inability
to use the Work (including but not limited to damages for loss of good-
will, work stoppage, computer failure or malfunction, or any and all other

49 Ver. 0.8.4: June 4, 2025



8 APPENDIX A: FULL TEXT OF LICENSE

commercial damages or losses), even if such Contributor has been advised
of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer, and charge
a fee for, acceptance of support, warranty, indemnity, or other liability obli-
gations and/or rights consistent with this License. However, in accepting
such obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by rea-
son of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

50 Ver. 0.8.4: June 4, 2025



9 APPENDIX B: HISTORY AND RELEASE NOTES

9 Appendix B: History and Release Notes

• Version 0.8.4, June 1, 2025

1. Added method annuity to allowable cash flow definition strings.

• Version 0.8.3, May 26, 2025

1. Initial Public Release

51 Ver. 0.8.4: June 4, 2025



10 APPENDIX C: DEVELOPMENT ROADMAP

10 Appendix C: Development Roadmap

10.1 Short Term

1. Adding comments to source code – essentially, putting this document
in the source code. I know, I know...but I really wanted to get this
package out in the wild.

10.2 Medium Term

1. Convert most data frame functionality from pandas to duckdb; pandas
DataFrames will still be used when such is required by an external
library.

10.3 Long Term

There are no long-term plans at this time.

52 Ver. 0.8.4: June 4, 2025


	License and Terms
	About Enginomics
	Installation and Required Libraries
	Class Cashflow
	About
	How to Use
	Import Statement
	Constructors and Quasi-Constructors
	SPECIAL NOTE: Cash Flow Time Horizons
	Overloaded Operators
	Property Methods
	Text Processing Methods for Cash Flow Definition Strings
	Analysis Methods

	Other Methods

	Class IncrementalBCR
	About
	How to Use
	Import Statement
	Constructor
	Static Methods
	Property Methods
	Methods


	Class IncrementalIRR
	About
	How to Use
	Import Statement
	Constructor
	Static Methods
	Property Methods
	Methods


	Class Amortization
	About
	How to Use
	Import Statement
	Constructor
	Methods


	Appendix A: Full Text of License
	Appendix B: History and Release Notes
	Appendix C: Development Roadmap
	Short Term
	Medium Term
	Long Term


